بسمه تعالى

حسابان
سوالات درس / كد :

(دوره دوم)منطقه \AA تهران
سال9-9y سال تحصيلى
يازدهم رياضى
پايه:

آقاى كاظمى
طراح:
كلاس :

صفحها از 9

$$
\begin{aligned}
& \rho_{r_{0}}=r S_{1 r} \Rightarrow 1 \cdot\left[r a_{1}+19 d\right]=r_{x} y\left[r a_{1}+11 d\right] \Rightarrow \sqrt{\Lambda a_{1}+r^{c} d=\cdot} \text { () } \\
& a_{c}=4 \Rightarrow \sqrt{a_{1}+r d=4} \quad \begin{cases}\wedge a_{1}+r d=\cdot & \sqrt{a_{1}=-r} \\
a_{1}+r d=4 & \boxed{d=r}\end{cases} \\
& \beta_{4}=\mu(r(-r)+\Delta(f))=r \wedge
\end{aligned}
$$

$\varepsilon_{g}-I Y_{g} F F_{g}-F A_{g} .$.

$$
\begin{aligned}
& \rho_{n}=1 . r 4 \Longrightarrow \frac{4\left((-r)^{n}-1\right)}{-r-1}=1 . r 4 \Longrightarrow(-r)^{n}-1=\omega 1 r \\
& (-r)^{n}=-\omega 1 r \Longrightarrow n \Rightarrow
\end{aligned}
$$

r
فो $\frac{\alpha^{r}}{\beta}+\frac{\beta^{r}}{\alpha}=\frac{\alpha^{\mu}+\beta^{\sim}}{\alpha \beta}=\frac{(\alpha+\beta)^{r}-\alpha \alpha \beta(\alpha+\beta)}{\alpha \beta}=\frac{1 r \Delta-1 \omega}{1}=11$
ب) $\alpha^{r}+\Delta \beta+9=\omega \alpha-1+\omega \beta+y=\omega(\alpha+\beta)+\omega={ }^{\omega}$.

$$
x=\alpha \Rightarrow \alpha^{\gamma}-\omega \alpha+1=0 \quad \alpha^{\mu}=\omega \alpha-1
$$

F

$$
\begin{aligned}
& c=1 \\
& \frac{-b}{r a}=1 \Rightarrow-b=r a \Longrightarrow b=-r a \\
& \left.\frac{r a c-b^{r}}{r a}=r \Rightarrow 1 r a=F a-b^{r} \Rightarrow \right\rvert\, r a=f a-\left(-r_{a}^{r}\right) \\
& \Rightarrow a=-r, b=r \quad f(x)=-r x^{r}+r x+1
\end{aligned}
$$

صفحه
 بيابيد. (انمره)

$$
\begin{aligned}
& x-r=0 \sqrt{x=r} \Rightarrow \wedge+1-r k-4=0 \sqrt{k-\omega} \\
& x^{2}+r x^{r}-0 x-4=\cdot \Rightarrow(x-r)\left(x^{r}+r x+r\right)=\cdot\left\{\begin{array}{l}
x_{1}=r \\
x_{r}=-1 \\
x_{r}=-r
\end{array}\right.
\end{aligned}
$$

(الف $(\sqrt{\Delta x-1}-r)^{\boldsymbol{r}}-\boldsymbol{r}(\sqrt{\Delta x-1}-r)^{r}=1 \Lambda$

$$
(\sqrt{\omega x-1}-r)^{r}=t
$$

$$
t^{r}-v t-11=\cdot \Rightarrow(t-9)(t+r)=\cdot\left\{\begin{array}{l}
t=9 \\
t=-r
\end{array}\right.
$$

$$
(\sqrt{\Delta x-1}-r)^{r}=9 \Rightarrow \sqrt{8 x-1}-r= \pm r \longrightarrow x=\frac{r v}{\omega} \text { 50 }
$$

ب) $|x-1|+|x+1|=-x+\boldsymbol{Y}($ روش جبرى $)$

x	$-\infty$	-1	1
$x-1$	-	$-\infty$	+
$x+1$	-	+	+

$$
\begin{cases}x<-1 & -x+1-x-1=-x+r \quad \sqrt{x=-r} \\ -55 \\ -1 \leqslant x \leqslant 1 & -x+1+x+1=-x+r \quad \sqrt{x=7} \quad-5 \\ x>1 \quad r x=-x+r \quad r=\frac{r}{c} \quad=5 i\end{cases}
$$

с) $\sqrt{1-x} \geq x^{\boldsymbol{r}}-\boldsymbol{r} x+1$ (روش هندسى)

بسمه تعالى

حسابان
سوالات درس / كد :

(دور ه دوم)منطقه \AA تهران
يازدهم رياضى
پايه:
سال تحصيلى 9Y-9Y
آقاى كاظمى
طراح:

Y
 ب) نقاطى از محور xها كه فاصلشان تا r- برابر r باشد برابر است با
 د) فاصله دو خط موازى • $\mathbf{~}$ - ا ات A

- 1

$$
M \left\lvert\, \begin{aligned}
& \frac{-r+}{r}=-1 \\
& \frac{-r+r}{r}=
\end{aligned}\right.
$$

AH AM الف) معادله ميانه

$$
\begin{aligned}
& A M=-\frac{1}{r} x-\frac{1}{r}=y \\
& \frac{c}{r}-x-1-r y=\cdot
\end{aligned}
$$

\div

$$
\begin{aligned}
& \text { - } m_{B C}=\frac{r+r}{r+r}=\frac{y}{r}=r \quad y-r=r(x-\cdot) \quad y-r=r x \Rightarrow \\
& -r x+y-r=\left.0 \quad A\right|_{-1} ^{r} \quad A H=\frac{|-r-1-r|}{\sqrt{9+1}}=\frac{1}{\sqrt{10}} \times \frac{\sqrt{1}}{\sqrt{10}}=(\sqrt{10})
\end{aligned}
$$

$$
\begin{aligned}
& x-y=-1 \xrightarrow{x r}{ }^{a} r x-r y=-r \\
& \begin{array}{c}
r x-r y=r \\
a^{\prime} \\
b^{\prime}
\end{array} \\
& d=\frac{|r+c|}{\sqrt{r^{r}+r^{r}}}=\frac{\omega}{\sqrt{\Lambda}} \quad \rho=\left(\frac{\omega}{\sqrt{\Lambda}}\right)^{r}=\frac{r \omega}{\Lambda}
\end{aligned}
$$

) $g(x)=x-\boldsymbol{r}, f(x)=\left\{\begin{array}{l}\frac{x^{\boldsymbol{r}}-x-9}{x+\boldsymbol{\varphi}} \\ \boldsymbol{r} x+m\end{array}\right.$ $x=-r$
$x=-r$

$$
\begin{gathered}
g(-r)=f(-r) \\
-\omega=-4+m \\
m=1
\end{gathered}
$$

$$
f(x)= \begin{cases}-\frac{1}{x} & x> \\ \sqrt{-x} & x \leq\end{cases}
$$

|| - تابع روبرو را رسم كنيد ، سیس دامنه و برد آن را بنويسيد. (ا نمره)

$$
y=\sqrt{-x}
$$

$$
\begin{aligned}
& D_{f}=\mathbb{R} \\
& R_{f}=1 R
\end{aligned}
$$

Y

$$
\begin{aligned}
& g=(x+r)^{r}-1 \quad f\left(x_{1}\right)=f\left(n_{r}\right) \Rightarrow\left(n_{1}+r\right)^{r}-y=\left(x_{r}+r\right)^{r}-x \\
& \stackrel{r}{\Longrightarrow}\left|x_{1}+r\right|=\left|x_{r}+r\right| \stackrel{r \leq-r}{\Rightarrow} f\left(x_{1}+r\right)=f\left(x_{r}+r\right) \Rightarrow x_{1}=x_{r} \\
& y=(n+r)^{r}-1
\end{aligned}
$$

$$
\begin{align*}
& D g \circ f=\{x \in D f \mid f(r) \in D g\} \Rightarrow\left\{\begin{array}{cc}
x \geqslant r \mid \sqrt{x-r} \neq 1
\end{array}\right\} \\
& \sigma \\
& 0 \sim-1 \\
& \circlearrowleft \cap G \Rightarrow D g \circ f=[r,+\infty)-\{r\}
\end{align*}
$$

@Paye11 $=g(f(n))=g(\sqrt{n-r})=\frac{r \sqrt{x-r}+r}{\sqrt{x-r}-1}$
$1 r 99 / 1 \cdot / r$
حسابان
يازدهم رياضى

تاريخ :
سوالات درس / كد:
پیايه:
طراح:

بسمه تعالى
دبير ستان پسر انه غير دولتى سيدالشهدا ((
(دوره دوم) منطقت A تهران
سال تحصيلى 9و-9Y
آقاى كاظمى

صفحه از 9

(1 1 - اكر

$$
\begin{aligned}
& g \circ f(x)=r n-1 \\
& g(f(x))=r n-1 \\
& r f^{r}(n)+\omega=r n-1
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{r x-4}{r}=x-r \\
& f(x)=\sqrt[r]{x-r}
\end{aligned}
$$

(الف) $f-g=$

$$
\begin{aligned}
& \left\{\left(0,-\frac{10}{r}\right)\left(r, \frac{v}{0}\right)(1,-r)\right\} \\
& \text { ب) } \frac{g}{f}=\left\{(0,14),\left(r,-\frac{\omega}{r}\right)\right\}
\end{aligned}
$$

$$
D g=\{0, r, r, 1\}
$$

$$
D f=R R-\{ \pm r\}
$$

$$
D_{f-g}=D_{f} \cap D_{g}=\{0,1, r\}
$$

$$
D g_{/ f}=\{0,1, v\}-\{1\}=\{0, r\}
$$

$$
\begin{aligned}
& \left.-1 \leqslant x<\cdot[x]=-1 \quad y=-x-r \quad \frac{m}{y} \right\rvert\,-1-1-r \\
& 0 \leqslant n<1 \quad[x]=0 \quad y=x-1 \quad \frac{y}{y} 0 \quad 1 \\
& 1 \leqslant x<r \quad[x]=1 \quad y=x \quad \begin{array}{l}
x \\
\frac{1}{y} 11 r
\end{array} \\
& \boldsymbol{r}[\boldsymbol{\gamma} x]^{\boldsymbol{r}}-[\boldsymbol{Y} x]+\boldsymbol{F}=\boldsymbol{\Delta} \\
& {[r x]=t \rightarrow r t^{r}-t-1=\cdot \Rightarrow a+b+c=\left\{\begin{array}{l}
t=1 \quad[r x]=1 \Rightarrow 1 \leqslant r u<r \\
t=\frac{c}{a}=-\frac{1}{r}=J \dot{c} \sqrt{r} \leqslant n<1
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pi } 9 \\
& y=\left(\frac{1}{\stackrel{r}{p}}\right)^{x-\boldsymbol{r}}+1 \\
& \text {. اV - الف) تابع نمايِ زير راحل كنيدو دامنه و برد آن رابنويسيد. } \\
& \sqrt{r}^{x^{r}-x} \geq(\sqrt{r})^{x} \\
& x^{r}-x \geqslant x \Longrightarrow x^{r}-r x \geqslant 0(x-r) \geqslant \cdot\left\{\begin{array}{l}
x=- \\
x=r
\end{array}\right. \\
& p \geqslant r \left\lvert\, \begin{array}{l|l}
n & -\infty \quad{ }^{r}+\infty+\infty \\
\hline
\end{array}\right. \\
& (-\infty, \cdot] \cup[r,+\infty)
\end{aligned}
$$

